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Fourier syntheses equivalent to the convolution of the calculated electron density function and 
either the :Patterson function or the difference Patterson function can reveal the errors in a pos- 
tulated model, if the positions of some of the atoms are postulated correctly. The peak heights and 
the locations of the principal maxima in the distributions are derived. Generally, for a structure 
containing atoms of equal weight, those in correct positions are generated with greater peak heights 
hi the convolutions relative to the corresponding peaks in the calculated electron density distribution 
than are the erroneous maxima, but  this difference is dependent upon the fraction of correctly 
postulated atoms. The correct sites are indicated by new maxima in the distribution, but the 
magnitude of these also depends upon the 'correctness' of the model. The interpretation of these 
functions in terms of image and point set theory is also outlined briefly. The application of one of 
these functions to the solution of a projection of dihydromalvalic acid is demonstrated. 

Introduction 

In  a crys ta l  s t ruc ture  analysis  by  the  method  of t r ia l  
and  error,  i t  is not  uncommon for the  successive 
Four ier  ref inement  to t e rmina te  a t  an incorrect 
solution as a resul t  of a gross error in a pa r t  of the  
model, a l though the  remainder  of the  a toms are cor- 
rect ly  placed. Often intui t ive methods  are used for 
f inding the  corrections, making  use of known stereo- 
chemical relationships.  Another  well-known technique,  
described by  Bunn  (1961), makes  use of the  error  
or difference synthesis.  I n  connection with  the  struc- 
ture  de te rmina t ion  of some long chain compounds,  
which are par t i cu la r ly  susceptible to this sort of 
difficulty,  we have  developed and  applied Fourier  
syntheses  of the  type  described by  R a m a c h a n d r a n  
& R a m a n  (1959) for indicat ing the  error  in a par t i a l ly  
correct t r ia l  s t ructure .  The method  is based on the  
convolution of the calculated electron densi ty  funct ion 
wi th  ei ther  the  observed Pa t t e r son  funct ion or the  
difference Pa t t e r son  function. Essent ia l ly  i t  compares 
the  pos tu la ted  model wi th  the  Pa t t e r son  funct ion and,  
being an  ana ly t ica l  method,  is more readi ly  adopted  
for use wi th  a high speed computer  t h a n  are methods  
which rely on chemically reasonable modifications to 
the  t r ia l  model. 

The convolut ions and their propert ies  

Consider the  convolutions in (1) and (2) below 

= Po(u)@c(u+r)dT:, A(r) ,,o 

B(r) = @~r + S[AP(u)]@~(r + u)dv . 
o 

(I) 

(2) 

Maxima occur in A (r) whenever  

r~,~c = u~, - ub + uc (3) 

where Ua' is the  positional pa rame te r  of the  a th  a tom 
in the calculated electron densi ty  function, @~, and  
(Uc-Ub) is an in tera tomic  vector  in the  observed 
Pa t t e r son  function. The funct ion B(r) is the  sum of 
the  calculated electron densi ty  funct ion and its 
convolution with the difference Pa t t e r son  funct ion 
zIP, which has been sharpened and  scaled by  the  
factor  S, so t h a t  the  peaks  in B(r) are comparable  
to those in @c. 

By  the  convolution theorem the Four ier  expansions 
of equat ions  (1) and  (2) are 

1 
A(r) = --~- Z [Fo(H)12Fc(n)exp [ - 2 n i H . r ]  (4) 

and  

B ( r ) = ~ - Z  1 +  : = :  F~ 
H 

× exp [ - 2 h i l l . r ] .  (5) 

The te rm,  IF[ 2 in (5) refers to the mean  squared 
s t ruc ture  factor  over an  adequate  range of sin 0/~t. 
These syntheses are re la ted to the  a-synthes is  dis- 
cussed by  R a m a c h a n d r a n  & R a m a n .  

A dis t r ibut ion wi th  m a x i m a  t h a t  are more com- 
parable  with the  peak  heights in the electron densi ty  
map  is a t t a ined  by  modifying the  coefficients in A(r) 
to give the  series, 

1 lEo(H)[ 2 
C(r) = ~ n ~ ]F~(H)I2Fc(H) exp [ - 2 ~ i H . r ]  (6) 

where 

A C 1 6 - - 2 9  
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Table 1. Peak height estimates 
Posi t ion  Series S t rength  Second order  approx imat ion  

rp A (So ~ q- Sp2)fp * 
rp B (Sp2/So2)fp 
rp C (1 + Sp2Sp'/Sc ' ) f  p (1 + 0.6 6Sp~SI2/Sc4)f p 
rf A So2f$ 
r/ B fin~So ~" 
r$ C (SqU/Sc ~" -{- 2Sp2S$2/Sc 4) (0.95Sq2/Sc 2 + 1.32Sp2S$2/Sc4(fp 
rq A Sp2fq 
rq B (Sp2/So~)fq 
rq C (Sp 2 ISc u)fq ( 1 -- O. 95S$2/Sc 2)fq 

• $2--  - ! : i f ,  the origin peak  in the  Pa t t e r son  funct ion  of the  s t ruc ture  indica ted  b y  the  subscript .  

f o ( H )  ~. 
< N  F~(H)~ 

and N must be chosen arbitrarily to ensure that  C(r) 
will not be dominated by a few large terms; for 
example, by setting it equal to the largest amplitude 
in the Fourier series. The C(r) series is related to the 
fl-gen series of gamachandran & Raman (1959), 
which is defined as follows, 

1 Ifnl~ 
fl-gen = ~ ~:H 1 ~  Fp exp [ - 2 ~ i H . r ]  (7) 

where Fn is the true structure factor of the total 
structure and Fp is the contribution of the known 
atoms to the structure factor. If the experimental 
errors in Fo are small 

and 
Fo ~ Fn = Fp + Fq (8) 

Fc=Fr+F/  (O I 

where Fp now refers to the contribution of those 
atoms correctly located in the model, Fg represents 
the contribution by the atoms falsely located and Fq 
is the contribution from the corresponding atoms 
correctly positioned. 

The Fourier coefficients in the series C(r) can now 
2 $ be written as Fn/Fp + Ff) ,  demonstrating the relation- 

ship to the fl-gen series. 
gamachandran & Raman have shown that  the 

mechanism for deconvoluting the Patterson function 
by means of the fl-gen series can be understood by 
recognizing that  its main maxima coincide with those 
in the a-gen series which is the following weighted 
sum function, 

1 
a-gen = - ~ l F n l ~ F p e x p [ - - 2 ~ i H . r ] .  (10) 

The same relationship obtains for our C(r) and A(r) 
series. 

Accordingly the deconvolution can be achieved 
through the superpositon or vector shift method. 
By applying the modulation principle (Raman) it is 
seen that  in the A(r) series the maxima of main 
interest coincide with those in B(r) and C(r) as shown 
in Table 1. The peak heights in C(r) which have been 

estimated to the second order of approximation 
(Srinivasan) indicate that  for a postulated structure 
composed of nearly equally weighted atoms, those in 
correct positions are generated with greater peak 
heights in both A(r) and C(r) relative to the cor- 
responding peaks in the calculated electron density 
function than are the erroneous maxima, and that  
this difference becomes larger as the fraction of 
correctly postulated atoms in the model increases. 
The peak heights at the positions of the unlmown 
atoms also increase with the fraction of correctly 
postulated atoms. The peak estimates given above 
are idealized by the assumption of completely resolved 
maxima with no overlap of the major with back- 
ground peaks. 

The C(r) series differs in two respects from the 
fl-gen series. First Fp in C(r) refers only to the atoms 
which are correctly postulated in a trial model, while 
Fp in fl-gen are for atoms whose positions explicitly 
are known, presumably from an analysis of the 

Fatt~r~0n. 80eondl~, th~ ~u~el, r~ition ]~roeess in 
relation to C(r) must be imagined as not restricted 
solely to the atoms contributing to Fp, as in fl-gen, 
but as being extended to include all of the atoms in 
the postulated structure. From this point of view it 
is not surprising that  the effectiveness of C(r) in 
bringing out the image of the correct structure is 
sensitive to the fraction of correct atoms in the model, 
which suggests the use and scope of the method, since 
the criterion for determining the model error consists 
in making a comparison of C(r) and @c(r). The extent 
to which an atomic peak in the model is reproduced 
in C(r) is used as an estimate of the error in the model 
and in favorable cases new peaks in C(r) not present 
in @c can give the unknown positions of atoms. 
Unfortunately, ~s mentioned above, this criterion f0r 
estimating the model error is itself sensitive to the 
fraction of the scattering matter that  has been cor- 
rectly postulated in the model. 

A double phased Fourier series essentially the same 
as the isomorphous fl synthesis of Ramachandran & 
Raman has been described and discussed by use of 
the modulation principle and the vector map point 
of view (Kartha, 1961). However, the salient properties 
of the convolutions in A (r) and B(r) are conveniently 
discussed by use of the matrix theory of point sets. 
The peak heights and their locations in the convolu- 
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tions as well as their symmetry  properties are discussed 
from that  viewpoint in the next section. 

The point  set  representat ion  of the convolut ions  

Buerger's matr ix  algebra for vector sets can be 
extended straightforwardly to a mathematical  descrip- 
tion of the point set representation corresponding to 
the set of maxima generated by the convolutions 
A(r) and B(r). This permits a study of the weights 
and locations of the points, their dependence upon 
coincidences brought about by the 'vector shift or 
superposition' operation, and the symmetry  properties 
of the point sets. 

Suppose that  Vo is the vector set matr ix  analogue 
of the observed Patterson function and that  F~ is 
the fundamental  set corresponding to the calculated 
electron density function, then A (r) can be represented 
by the point set matr ix  FcVo. Each point in F~Vo 
is a triple, a'bc, corresponding to a particular maximum 
in A(r), for example r:,~c in equation (3). The com- 
plete set, F~Vo, is generated by mult iplying each 
element of Vo on the left by an element in F~. 

FcVo=a'Vo+b'Vo+ . . . 
= a ' ( a a + a b + a c + . . . ) + b ' ( a a + a b + a c + . . . ) +  (11) 

If V is the vector set of F, then F V becomes the cubed 
point set, where 

C = F V = F  ~. (12) 

If F contains n points and is non-centric, then the 
point set C contains at most ½(n 3 -  n 2 + 2n) points and 
is also non-centric. Interestingly the number of points 
in C for the centric case is ~(n3+8n). 

I m a g e s  in the cubed set m a t r i x  

The image theory by Wrinch (1939) can be extended 
to the cubed set matr ix  by following the same method 
that  Buerger (1950) used in applying it to the vector 
set matrix. The feature of particular interest here is 
the occurrence of 2n images of the fundamental  set 
polygon in the cubed set matrix.  On a V, the first 
layer of the C matrix, consider the first row, 
a(aa q- ab--1- ac . . .  ) which represents the image of the 
fundamental  set polygon in the point a. Clearly, 
on each layer of the cubed matr ix  there is found one 
row with this image property. Therefore n images of 
this kind occur in the cubed set and these coincide. 

[Next consider the linear array of matr ix  elements 
that  run perpendicular to the layer a V and that  
intersect the main diagonal. One such array is com- 
prised of the points (aaa-t- baa-b caa-I- daa + . . .  ), but 
this file of matr ix  elements possesses image properties 
identical with those of the row described in the preced- 
ing paragraph, since baa=aab. Evident ly  a total of 
2n images of the fundamental  set occur in the cubed 
set matr ix  and these coincide. However, the number 
of points in the cubed set matr ix  that  coincide at 

each point of the fundamental  set is 2 n - l ,  for 
although 2n images coincide, every pair of images 
has a diagonal element as a common point. 

The effect of the coincident images that  occur in 
the cubed set is to make the weight at each of the 
image points equal to the sum of the weights con- 
tr ibuted by each of the coinciding images. For ex- 
ample, the weight of the point in the cubed set 
coincident with the point a in the fundamental  set is 

. ~ 2 W ~ W a - W ~ ,  where W~ is the weight of the i th 
i 

point in a fundamental  set of n points and the summa- 
tion over the coincident points makes allowance for 
the fact that  although 2n images coincide, every pair 
of images contains a cubed set matrix element and 
therefore one point in common. The weights at other 
typical points in the non-centric case are, for example, 
W~W~ at aba and 2 WaWoW~ at abc (coincides with cba). 
In  the centrosymmetric cubed set matrix,  on the other 
hand, there are 3 n - 3  coinciding images of the 
fundamental  set, while systematic coincidences at 
other typical  points number 1 at aa~, 3 at bab and 
6 at abc. The vector shift or superposition method 
can be considered to be the mechanism for bringing 
the various images manifested in the cubed set matr ix  
into coincidence. The same result is predicted if the 
principle of modulation is applied to an equivalent 
Fourier series with coefficients Fn]Fnl 2. 

S y m m e t r y  propert ies  in the cubed point  set 

By a transformation of the cubed set matr ix into the 
so-called condensed matrix,  it  can be shown that  if 
the fundamental  set contains a given symmetry  
element, it is also contained in the cubed set (Sax, 
1961). Furthermore, the presence of the inversion 
center in the vector set does not imply one in the 
cubed set. 

In the same way the matr ix representation of the 
point set FcVo can be transformed into a condensed 
matr ix  for the purpose of studying the symmetry  
properties of that  point set (Sax, 1961). These con- 
siderations lead to the following results: 

If the vector set Vo contains the symmetry  elements 
that  are present in the vector set Ve, then the space 
group of FcVo is the same as the one assumed for Ft. 

If a symmetry  element in Vc is not present in Vo, 
the space groups of FcVo and Fc differ. 

Finally,  if a symmetry  element that  is contained 
in Vo is not present in V~, the corresponding element 
(present of course in Fo) will not be present in F~Vo. 

The point  set representat ion  of 
the convolut ion B(r)  

The point set analogue of the convolution B(r) is 
given by 

M = F c + F c ( V o -  Vc)g. (13) 
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The factor g places the weight of certain points in 
F~(Vo-V~)  on a basis comparable with the fun- 
damental point weights and is given here by the 
equation 

N 
g-Z = n ~, W~(aJ (14) 

1 

where W(aJ is the weight of the j th  point in the 
asymmetric unit of F which may be designated by As 
and that  contains /V points. The subscript i denotes 
a symmetry related unit and runs from 1 to n. 

From the discussion in the preceding section it 
follows that  the symmetry of M provides a first check 
upon the correctness of the assumed model. If the 
symmetries of M and F~ differ, the assumed sym- 
metry must be incorrect. 

One procedure for analyzing the behavior of the 
points in M that  coincide with loci of points in F~ or 2'0 
is first to consider the number and location of points 
corresponding to the matrix elements of (Vo-Vc)  
and secondly, to repeat the process for the matrix 
(F~Vo-C~). This procedure is followed below. 

Let the f~ points in the general asymmetric unit 
of F be designated by A i = ( a i + b i + . . . ) .  Then the 
square matrix (Vo-Vc)  can be partitioned into n e 
matrices zlzz+/11~.., z]~., where n is the number of 
general equivalent positions andZl ij = ( A iA Jo - ( A iA J~. 
Since a typical element in z]~j is (cieJo- (cieJ~ evidently 
an element is zero if it contains points in 2'o or F~ 
that  coincide. In general/]i j  and Ai~, however, will 
contain 2 N x - x ~  and 2 N x - x ~ - x  non-zero elements 
respectively, where x is the number of points in As 
for which (ai)o~: (ai)~. 

The cubed matrix F~(Vo-V~) can be expanded in 
the form 

( F c V o - C ) =  (A~ + A~+ . . . + An)~(Azz + Az~.+ . . . Ann) 
= (AzA~z+A~At~+. . .  + A ~ A ~ + . . .  +AnA,~n). (15) 

Inspection of the individual terms in this ex- 
pression shows that  the points in (FcVo-C)  that  
coincide with points in Fo or Fc occur only in the 
matrix sets XA~Ai~ and 

.Z Z A ~ A ~  . 

If, then, as is contained in both Fo and Fc or in Fo 
only, n ( 2 N - x )  points in (FcVo-C)  coincide at the 
locus o~ as with a net weight equal to (S~-g  -1) W a ,  
where 

S~ = .,Y, W~(a~) 
i 

and where the summation is taken over the square 
of the point weights of those points that  are both 
in Fo and Ft. If as is contained in F~ only, (/Vn-1) 
points in (F~Vo-C) coincide at its locus with weight 
equal to -Wa~(Wa~-g-Z). For the centric case the 
number and net weight of the points in (FcVo-C)  
coinciding at the locus of a particular point, as, in Fo 

are (4nN--2nx) and (S~-g-1)Wa~ respectively. At as 
contained in Fc only, the number and net weight are 
(2Nn-3)  and (3Wai-g-1)Wa~ in the centric case. 

On the basis of these results, the important prop- 
erties of M in equation (14) can be deduced straight- 
forwardly. For the non-centric case the weight of a 
point in M coincident with a in 2'o is gSpWa, but 
if the point is contained in Fc only, its weight is gW]. 
For the centric case the net weight of points in M 
coinciding at the locus of a is (2gS~-1)Wa if a is in 
Fo and Ft. The weight of the coinciding points equals 
2SpgWa, if a is in Fo only. If it is in Fc only, the 
weight is (3g-1)Wa. These results agree with those 
predicted by the modulation principle. In a centro- 
symmetric space group, negative minima may occur 
in B(r) at the erroneously postulated atomic positions. 
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Fig. 1. Comparison of observed electron dens i ty  and  C(r) 
funct ions a t  different  stages in the  s t ruc ture  determinat ior .  
of d ihydromalva l ie  acid, 0kl projection.  

(a) Model, R 0.61 for fo r ty  non-axia l  reflections. 
(b Elect ron dens i ty  map  assuming model  in a. 
(e) C(r) map assuming model in a. 
(d) Model, R 0.52 for forty non-axial reflections. 
(e) Electron density map assuming model in d. 
(f) C(r) map assuming model in d. 
(g) Correct model, R 0.20 for 220 reflections. 
(h) Electron density distribution based upon g. 
(i) C(r) map based upon g. 
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The maxima giving the corrected sites appear with 
doubled strength relative to the non-centric case but 
the maxima at the sites of the correctly postulated 
atoms are more sensitive to errors in the structure 
than in the non-centric case, since the rate of fall 
off in the peak height with the number of erroneously 
placed atoms of equal weight is doubled. 

An applicat ion of the funct ion 

A brief description of our experience wi th  the  function, 
C(r) as defined in (6), when applied to the crys ta l  
s t ruc ture  analysis  of d ihydromalval ic  acid, C~sHsa02, 
will i l lustrate  some of its properties.  The funct ion was 
applied to the (Okl) projection when a sa t i s fac tory  t r ia l  
model had  not  been obtained.  

The d a t a  consisted of 40 axial  reflections (00/) 
whose signs were known from the (hO1) projection 
(Craven & Jeff rey,  1960) and  twen ty  each of the  low 
order 01/ and 02/ terms.  The agreement  factor,  R, 
was 0.61 excluding the  axial  reflections and there 
was no indicat ion of convergence to a correct solution. 

The init ial  t r ia l  model is shown in Fig. l(a) where 
concentric circles represent  oxygens and circles are 
the  carbon positions. The corresponding electron 
dens i ty  and C(r) maps  are shown in Figs. l(b) and l(c) 
respectively.  The most  obvious discrepancies between 
the model and C(r) were a t  the  center  of the mole- 
cule, near  the cyclopropyl ring, and  a t  the  te rminal  
methy l  group. Some minor changes in the  chain 
direction and the  te rmina l  configurat ion improved 
R to 0.52. The model,  ~(r), and  C(r) maps  are shown 
in Fig. l(d), (e) and  (f).  The discrepancies again  
indicated errors a t  the  ends of the  molecule, and 
suggested a reversal  of the  model. This corresponded 

to a shift  of z coordinates to ¼ - z ,  wi th  the  carboxyl  
groups dimerized by  hydrogen bonding across a 
s y m m e t r y  center a t  (¼, ¼) ins tead of the origin of the 
space group A2/a. The correct model is shown in 
Fig. l(g). Successive Four ier  ref inement  proceeded 
normal ly  to give an agreement  of about  0.20 and the  
electron densi ty  projection shown in Fig. l(h) which 
contained 220 terms.  The corresponding C(r) map 
appears  in Fig. 1(i). 

A comparison of map  (h) wi th  the  maps  (b), (e), (e) 
and (f)  shows quite clearly t h a t  the  C(r) functions 
gave a bet ter  indication of the  t rue  atomic positions 
which were not  included in the  model t h a n  did the  
electron densi ty  functions. 

The au thor  expresses his t hanks  to Prof. G . A .  
Jef f rey  for his encouragement  and  criticism and to 
Drs R. Shiono, S. Chu and R. McMullan for the  use 
of their  IBM 650 and 7070 Four ier  programs.  This 
research was suppor ted by  the U.S. Public  Hea l th  
Service, Nat ional  Ins t i tu tes  of Heal th .  
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Analysis of Three-Dimensional Patterson Maps Using Vector Verification 

By ALAmo D. ~IGHELL AND ROBERT A. JACOBSON 

Department of Chemistry, Princeton University, Princeton, New Jersey, U.S.A.  

(Received 28 May 1962) 

A new path from the Patterson map to an electron density map has been investigated. The procedure 
is called vector verification and involves testing all points in x, y, z space. Harker  vectors are 
generated for each point and their presence is sought in the Patterson map. If  all vectors are present, 
the point may  be an atomic position. In most cases, over 95% of the positions in x, y, z space are 
at  once eliminated. I t  has been demonstrated that  by using one known atomic position the remaining 
atomic positions could be determined. One method which may be used to determine the position 
of a 'known' atom involves the selection of a vector from the vector set, and the use of this vector 
in a verification procedure leading to the position of an atom in the fundamental  set. 

Introduct ion 

Most crysta l  s t ructures  are solved by  conversion of 
vector  sets to the  corresponding fundamenta l  sets. 

This step is usual ly  the  most  difficult and t ime- 
consuming in the s t ruc ture  de te rmina t ion  of a com- 
pound, and is especially difficult when heavy  a toms 


